

CURATION AND DATA MANAGEMENT

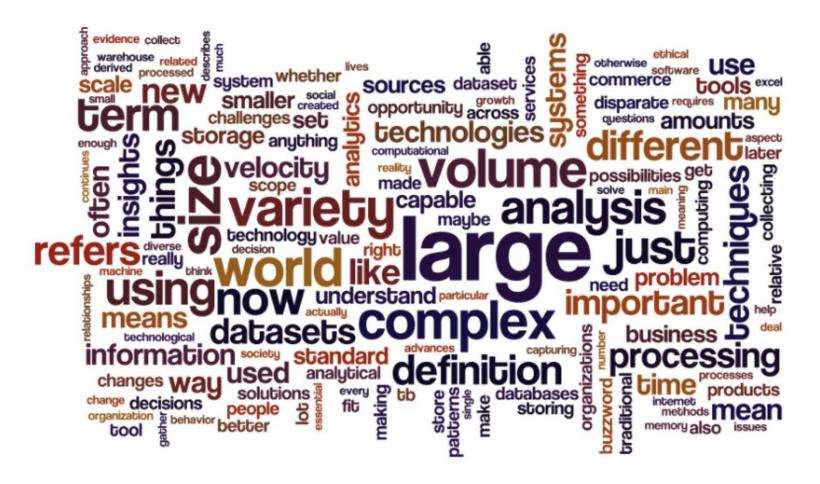
In the Open Science Orbit - Introduction to Open and Responsible Research

Workshop for experienced researchers

04 February 2025

Peter Stanchev

Kettering University, IMI-BAS


Funded by the European Union. Views and opinions expressed are however those of the auhor(s) only and do not necessarily reflect those of the European Union or the REA. Neither the European Union nor the granting authority can be held responsible for them.

WHAT IS DATA SCIENCE?

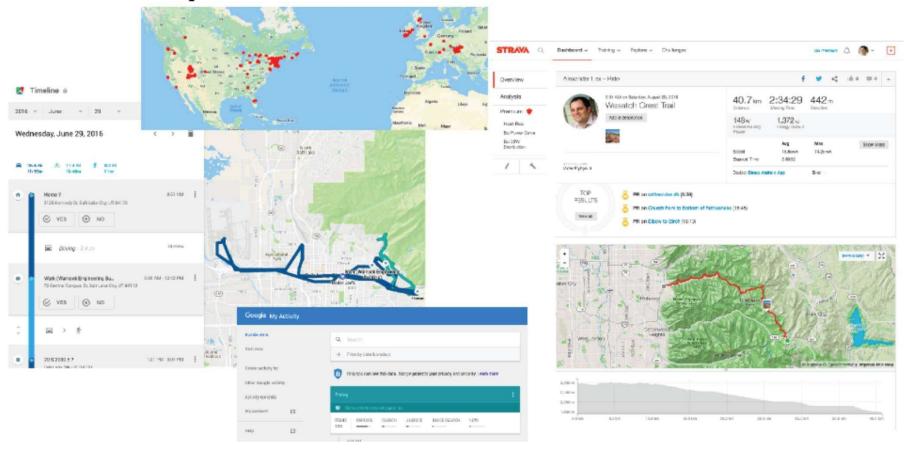
WHAT IS DATA SCIENCE?

Data Science is the study of data. It is about extracting, analyzing, visualizing, managing and storing data to create insights. These insights help the companies to make powerful data-driven decisions. Data Science requires the usage of both unstructured and structured data. It is a multidisciplinary field that has its roots in statistics, math and computer science. It is one of the most highly sought after jobs due to the abundance of data science position and a lucrative pay-scale [towardsdatascience.com].

Туре	of Data	Used at Work
	66%	Relational data
	53%	Text data
	18%	Image data

<	Coding Languages Used
	76% Python
	59% R
	54% sql

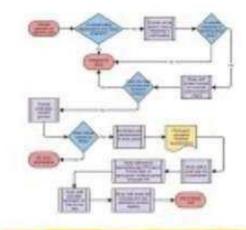
Highest Education Level Attained										
42% Master's degree										
32% Bachelor's degree										
16% Doctoral degree										

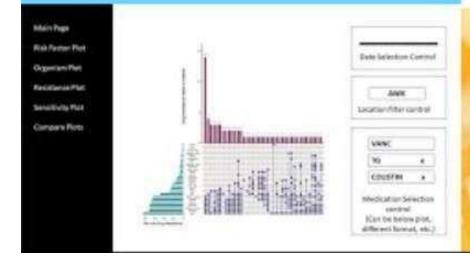


WHY BECOME A DATA SCIENTIST?

- It's in Demand. Is predicted to create 11.5 million jobs by 2026.
- Abundance of Positions. Data Science is a vastly abundant field and has a lot of opportunities.
- A Highly Paid. Data Scientists make an average of \$116,100 year. The Senior Data Scientist make \$138,068 in USA, \$85,247 in Europe
- Data Science Makes Data Better. The researchers deal with enriching data and making it better for their company.
- Data Scientists Are Highly Prestigious. Data Scientists allow companies to make smarter business decisions.
- Data Science Makes Products Smarter. It has enabled computers to understand human-behavior and make data-driven decisions.
- Data Science Can Save Lives. Healthcare sector has been greatly improved because of Data Science.

Example: Personal Data

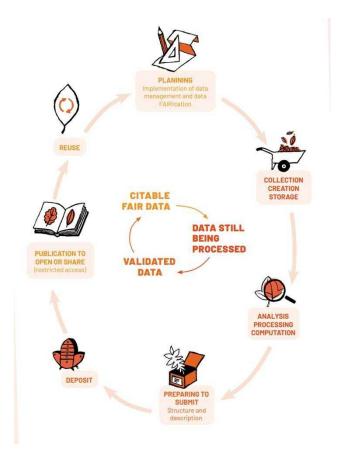

DATA CURATION


- Data curation is the process of creating, organizing and maintaining data sets so they can be accessed and used by people looking for information. It involves collecting, structuring, indexing and cataloging data for users in an organization, group or the general public.
- Collect the data sets.
- Cleanse the data
- Transform the data
- https://www.youtube.com/watch?v=s6s0BpxUIFo

What data curation is...

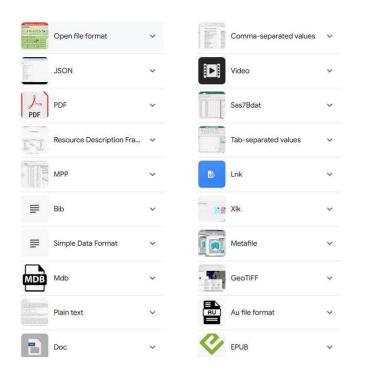
...and why you need to learn it!

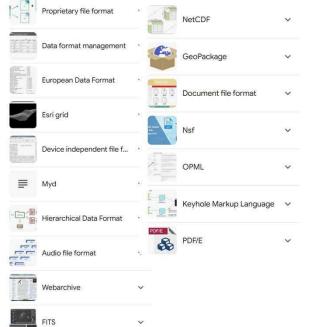
DATA ORGANIZATION

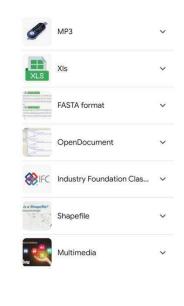

- Involves systematically arranging data in a structured format
- Here are some key points:
 - Categorize and classify data.
 - Use databases, spreadsheets, or other storage systems.
 - Ensure easy retrieval, analysis, and interpretation.

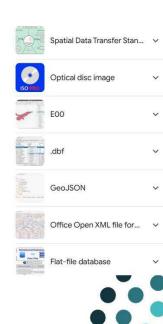
DATA MANGEMENT

- Data management is the practice of collecting, organizing, managing, and accessing data to support productivity, efficiency, and decision-making.
- https://www.youtube.com/ watch?v=ISSb39KlgoI









pclass	survived	name	sex	age s	ibsp pa	rch tic	ket	fare	cabin	embarked boat	body	home.dest
		Allen,										
		Miss. Elisabeth										
	1	1 Walton	female	29	0	0	24160	211.3375	B5	S	2	St Louis, MO
	_	Allison, Master.	remare		·	· ·					_	or 200.0,o
	1	Hudson		0.0167	1	2	112701	151 55	c22 c2c	C	4.4	Montreal, PQ /
	T	1 Trevor	male	0.9167	1	2	113781	131.55	C22 C26	3	11	Chesterville, ON

Excel files

<Movie id="lala" year="2016" actors="rg</pre>

<Name>La Land</Name>

```
MovieData
<MovieData>
                                                      Star
<Star id="es" movie="lala">
                                                                     Movie
                                                             Star
<Name>Emma Stone</Name>
                                                 id = es
                                                            id = rg
                                                                        year = 2016
                                                 movie = lala
                                                            movie = lala
                                                                        actors = rg es
<Address>222 Sunset Blvd.
                                                                        id = lala
                                                                  address
                                                          Name
                                              Name/
Hollywood</Address>
                                                         Ryan Gosling
</Star>
                                            Emma Stone
                                                      Address
<Star id="rq"
                                                 222 Sunset Blvd. Hollywood
                                                                  Los Angeles
movie="lala">
<Name>Ryan Gosling</Name>
<Address>
<City>Los Angeles</City>
<Zip>90210</Zip>
</Address>
```

XML files

</Star>

</Movie>

</MovieData>

es">

name

La La Land

Json files

ORBIT is a new project funded by a cascading grant of the REINFORCING Project that aims to strengthen and expand the application of Open and Responsible Research and Innovation (#ORRI) practices in research within Sofia University St. Kliment Ohridski in collaboration with NGO #Links. The project started on 1 September 2024. Yesterday and today, some of our team members attended a vibrant and informative training in #Brussels. In the photo, Maria Zolotonosa from Stickydot presents best practices in citizen engagement.

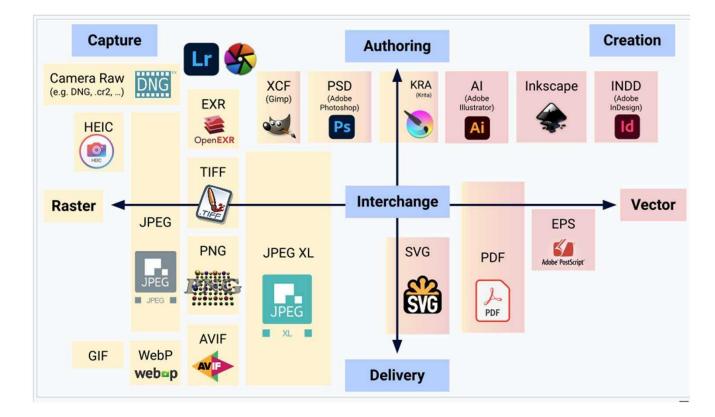
Web pages

experimental investigation of the aerodynamics of a wing in a slipstream .

an experimental study of a wing in a propeller slipstream was

made in order to determine the spanwise distribution of the lift increase due to slipstream at different angles of attack of the wing and at different free stream to slipstream velocity ratios . the results were intended in part as an evaluation basis for different theoretical treatments of this problem .

the comparative span loading curves, together with supporting evidence, showed that a substantial part of the lift increment produced by the slipstream was due to a /destalling/ or boundary-layer-control effect. the integrated remaining lift increment, after subtracting this destalling lift, was found to agree well with a potential flow theory.


an empirical evaluation of the destalling effects was made for the specific configuration of the experiment .

text files

Image formats

Adj Close Close

Data series

Ticker	TSLA	TSLA	TSLA	TSLA	TSLA	TSLA	
Date							
2020-01-02 00:00:00+00:00	28.684000	28.684000	28.713333	28.114000	28.299999	142981500	
2020-01-03 00:00:00+00:00	29.534000	29.534000	30.266666	29.128000	29.366667	266677500	
2020-01-06 00:00:00+00:00	30.102667	30.102667	30.104000	29.333332	29.364668	151995000	
2020-01-07 00:00:00+00:00	31.270666	31.270666	31.441999	30.224001	30.760000	268231500	
2020-01-08 00:00:00+00:00	32.809334	32.809334	33.232666	31.215334	31.580000	467164500	
•••	***	(*****)	***	***		***	
2022-05-24 00:00:00+00:00	209.386673	209.386673	217.973328	206.856674	217.843338	89092500	
2022-05-25 00:00:00+00:00	219.600006	219.600006	223.106674	207.669998	207.949997	92139300	
2022-05-26 00:00:00+00:00	235.910004	235.910004	239.556671	217.886673	220.473328	106003200	
2022-05-27 00:00:00+00:00	253.210007	253.210007	253.266663	240.176666	241.083328	89295000	
2022-05-31 00:00:00+00:00	252.753326	252.753326	259.600006	244.743332	257.946655	101914500	

High

Volume

DATA CLEANING

DATA CLEANING

Missing data

- **Removal**: When missing data severely compromises the quality of analysis, it may be necessary to remove those records.
- **Imputation**: To avoid losing valuable data, you can fill in missing values using methods like mean, median, or mode imputation.
- Removing Duplicates
- Correcting Inconsistencies
 - **Standardization**: Consistent data formats across your dataset improves readability and usability.
 - **Validation**: Constraints and checks can prevent invalid data entries, maintaining data integrity.

Validating Accuracy

- **Cross-Verification**: Comparing your data against trusted external sources can help verify its accuracy and authenticity.
- **Cross-Verification**: Comparing your data against trusted external sources can help verify its accuracy and authenticity.

STANDARDIZATION

- Common Standardization Targets
 - Date Formats: Standardizing dates to a consistent format, such as 'YYYY-MM-DD
 - Text Case: Converting text to a consistent case enhances searchability and uniformity across the dataset
 - Consistent Units: Standardizing measurement units prevents calculation errors and ensures clarity

NORMALIZATION

```
3 data = [{'price':850000, 'rooms':4,'neighborhood':'airport'},
4 {'price':1000000,'rooms':3,'neighborhood':'downtown'},
5 {'price':2000000,'rooms':5,'neighborhood':'Foothill'}]
```

	neighborhood=Foothill	neighborhood=airport	neighborhood=downtown	price	rooms
0	0	1	0	850000	4
1	0	0	1	1000000	3
2	1	0	0	2000000	5

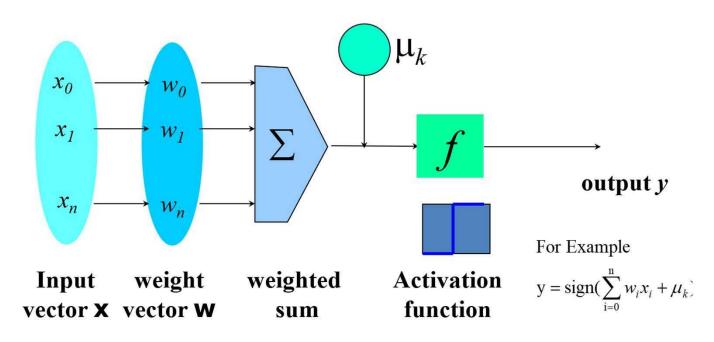
NORMALIZATION

```
sample = ['problem of evil','evil queen','horizon problem']
from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()
X = vec.fit_transform(sample)
pd.DataFrame(X.toarray(), columns =vec.get_feature_names
```

evil horizon of problem queen

from sklearn.feature_extraction.text import TfidfVectorizer


vec = TfidfVectorizer()
X = vec.fit_transform(sample)
pd.DataFrame(X.toarray(), columns = vec.get_feature_names())

\Box	evil		horizon	of	problem	queen
	0	0.517856	0.000000	0.680919	0.517856	0.000000
	1	0.605349	0.000000	0.000000	0.000000	0.795961
	2	0.000000	0 795961	0.000000	0 605349	0.000000

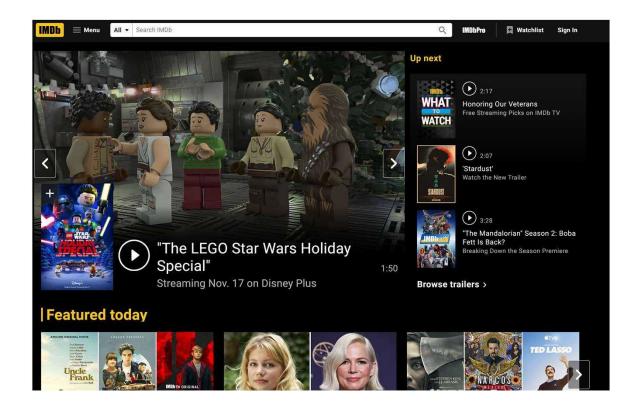
ANALYSIS

A Neuron (= a perceptron)

REINFORCING

BINARY CLASSIFICATION: EXAMPLE

- 50, 000 reviews separated in training and testing sets
- In each set, 1/2 of the reviews are positive and the other half negative.

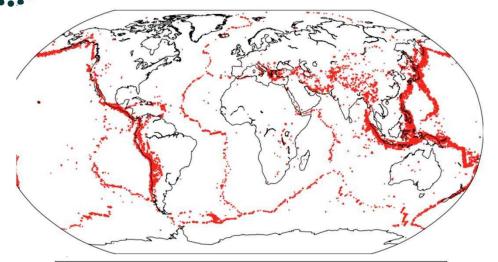

from keras.datasets import imdb

```
(training_data,training_labels), (testing_data,testing_labels) = imdb.load_data(num_words=10000)
```

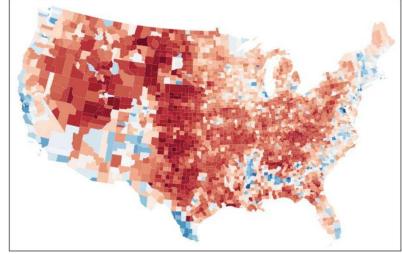
- 10000 means that we only keep the top 10,000 most frequent words in the reviews.
- Each review will be represented as a list of words, e.g, (2,53,233,22) is a review of 4 words.
- A label of 0 means negative review and a label of 1 means positive review.


```
1 results = model.evaluate(x_testing,y_testing)
2
```

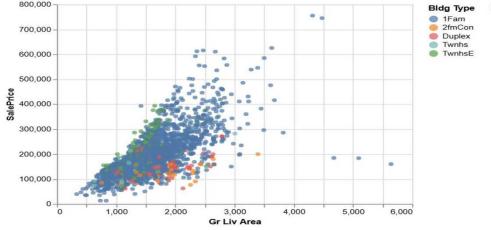

REINFORCING


```
1 nba
                      age bref_team_id
                                                                                                                   season_end
0
        Quincy Acy
                                                               0.468
                                                                                                                                2013
1
      Steven Adams
                                                           185 0.503
                                                                       ... 190 332
                                                                                                            265 2013-2014
                                                                                                                                2013
                                               1197
                                                                                              57
                                                                                                  71 203
2
        Jeff Adrien
                        27
                                    TOT 53 12
                                                           275 0.520
                                                                          204 306
                                                                                                            362 2013-2014
                                                                                                                                2013
                                                 961
                                                     143
                                                                                     38
                                                                                         24
                                                                                                  39 108
       Arron Afflalo
3
                   SG
                        28
                                    ORL 73 73
                                                2552
                                                          1011 0.459
                                                                       ... 230 262 248
                                                                                         35
                                                                                               3 146 136
                                                                                                           1330
                                                                                                                2013-2014
                                                                                                                                2013
       Alexis Ajinca
                                                           249 0.546
                                                                                                            328 2013-2014
                                                                                                                                2013
                                   NOP 56 30
                                                 951 136
                                                                       ... 183 277
                                                                                                  63 187
```

```
1 nba['distance'] = nba_normalized.apply(lambda row: euclidean_distance(row, player_normalized,distance_columns), axis=1)
2
3 nba.sort_values('distance',inplace=True)
4 print(nba)
5
```


	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	1
225	LeBron James	PF	29	MIA	77	77	2902	767	1353	0.567	
17	Carmelo Anthony	PF	29	NYK	77	77	2982	743	1643	0.452	
277	Kevin Love	PF	25	MIN	77	77	2797	650	1421	0.457	
179	Blake Griffin	PF	24	LAC	80	80	2863	718	1359	0.528	
110	Stephen Curry	PG	25	GSW	78	78	2846	652	1383	0.471	

REINFORCING



PRESENTING THE DATA

```
1 import altair as alt
2
3
4 alt.Chart(housing).mark_circle().encode(
5    x="Gr Liv Area",
6    y="SalePrice",
7    color="Bldg Type"
8 )
9
10
11

Bldg Type
1 Fam
```


THANK YOU

Peter Stanchev <u>pstanch</u> e@kettering.wdw.rei nforcing.eu

